《2015-2020年全球及中国汽车雷达产业研究报告》包含以下内容:
1、中国ADAS现状
2、汽车雷达市场与产业
3、汽车毫米波雷达应用趋势
4、汽车激光雷达应用趋势
5、9家汽车雷达企业研究
6、ADAS发展趋势
汽车雷达分超声波雷达、毫米波雷达和光波雷达(Lidar)。超声波雷达探测距离通常不超过5米,主要用于泊车辅助。
毫米波雷达是目前最热门产品,与摄像头和光波雷达相比,毫米波是唯一不受天气和光线影响的传感器;与摄像头相比,毫米波雷达在速度和距离探测上拥有压倒性的优势。而摄像头与毫米波相比在物体(Object)分类和识别上拥有优势,但和Lidar比则完全没有优势。2015年全球毫米波汽车雷达市场规模约为19.36亿美元,预计2016年市场规模达24.60亿美元,到2020年可达51.20亿美元,是电子领域最具增长力的产品。
Lidar在物体运动轨迹(Object Tracking)预测上拥有绝对优势,同时在探测精度上也拥有优势。未来无论毫米波雷达还是Lidar都比摄像头有更广的发展潜力,摄像头只能用做雷达的辅助。
毫米波雷达目前主要有24GHz和77GHz两大类,还可以再分为窄带(NB)和超宽带(UWB)两大类;按探测距离分为SRR、MRR、LRR。24GHz雷达主要做盲点检测(BSD)、变道辅助(LCA)、塞车辅助(Traffic Jam Assist)、后方预碰撞系统Rear Pre-crash System(RPS)等。77GHz雷达主要用做自适应巡航(ACC),自动刹车(AEB)等。
目前自动跟车型(Stop&Go)ACC大多采用三个雷达设计,车正中间一个77GHz的LRR,探测距离在150-250米之间,角度为10度左右,车两侧各一个24GHz的MRR,角度都为30度,探测距离在50-70米之间。德尔福和大陆开发一种新型雷达,采用双扫描波束(Beam)设计,将三个雷达合为一体,称为MLRR。自适应巡航(ACC),自动刹车(AEB)是最有实际意义的ADAS功能,未来会成为中高档汽车的标配,因此77GHz雷达发展速度很快,2015年其市场规模为10.36亿美元,预计到2018年就达到23.90亿美元。
毫米波雷达厂家都在大力开发下一代79GHz雷达,其探测精度是目前77GHz雷达的2-4倍,能够检测出行人和自行车,发展空间巨大,79GHz的探测距离一般不超过70米,未来可能成为MRR的主流,也有可能侵蚀一部分24GHz雷达的市场,预计到2018年79GHz雷达会进入市场,日本的富士通天、松下和电装是此领域的强者。
Lidar主要用来为无人驾驶提供一个实时的3D环境数字模型。Lidar分固定光束(Fix Beam)与扫描(Scanning)光束两大类,前者价格不高于60美元,后者价格一般都在1万美元以上。在21世纪初,毫米波雷达的价格也是在1万美元左右,日本厂家在激光领域实力强大,纷纷开发出固定光束型Lidar来代替毫米波雷达,后来毫米波雷达价格直线下滑,固定光束型Lidar淡出市场。不过近期固定光束型Lidar又卷土重来,尤其是Continental的MFL,极低的价格,小巧的体积,让其在部分场合再次取代毫米波雷达。不过其探测距离只有10-12米,未来有望拓展。
扫描型Lidar最常见的就是用于谷歌自动驾驶车顶部的VelodyneHDL-64E,价格高昂。其成本高昂主要体现在光学和机械部分,光学部分必须人手工打造,且耗费时间,也无法大量生产。此外,激光二极管(Ld)、光电探测器Photodiode和FPGA价格也都不低。用MEMS Micro Mirror替换机械与光学部分是降低成本最有效的方法。MEMS Micro Mirror技术早已成熟,在投影机上已经大量商业化,但在Lidar上需要改进,目前的缺点是角度问题,在近距离情况下发射率极低,例如Quanergy的Lidar在100米距离下,反射率仅10%,而传统的Lidar为80-90%。Quanergy采用8线扫描,传统的8线扫描Lidar成本大约3000-4000美元,Quanergy宣称大量生产可以将成本做到100美元,这是有可能的。
超声波雷达领域三强鼎立,博世、松下和Valeo,市场竞争不明显,价格稳定。24GHz雷达领域Hella独占鳌头,TRW在被ZF并购后也加大了研发力度,Continental则在(Stop&Go)ACC占有率极高。77GHz领域,博世以LRR3最远探测距离达250米,占据市场第一的位置,不过博世的客户集中在奥迪和大众,而Continental客户分布更广,产品线也更齐全。日本市场主要是富士通天和电装,富士通天略胜一筹。
Global and China Automotive Radar Industry Report, 2015-2020 contains the followings:
1 Status Quo of ADAS in China
2 Automotive Radar Market and Industry
3 Automotive Millimeter-wave Radar Application Trends
4 Automotive Lidar Application Trends
5 9 Automotive Radar Companies
6 ADAS Development Trends
Automotive radars fall into ultrasonic radar, millimeter-wave radar and lidar. The detection distance of ultrasonic radar is usually not more than 5 meters, mainly suitable for parking assistance.
Compared with cameras and lidars, the more popular millimeter-wave radars are the only sensors not subject to weather and light. Millimeter-wave radars outperform cameras in terms of velocity and distance detection overwhelmingly, while cameras are better than millimeter-wave radars at object classification and recognition, but inferior to lidars. In 2015, the global market size of automotive millimeter-wave radars hit about USD1.936 billion; it is expected to reach USD2.46 billion in 2016 and USD5.12 billion in 2020, with the most remarkable growth potentials in the field of electronic products.
Lidar enjoys absolute superiority in object tracking, and also perform well in detection accuracy. In future, both of millimeter-wave radar and Lidar will surpass cameras and embrace broader development potentials, and cameras can be only used as the assistant to radars.
At present, millimeter-wave radars consist of 24GHz and 77GHz types, which are subdivided into narrowband (NB) and ultra-wideband (UWB); according to detection range, there are SRR, MRR and LRR. 24GHz radars are mainly applied to blind spot detection (BSD), lane change assist (LCA), traffic jam assist, rear pre-crash system (RPS) and the like. 77GHz radars are primarily used for adaptive cruise control (ACC), autonomous emergency braking (AEB) and so forth.
Currently, Stop & Go ACC mostly uses three radars. A 77GHz LRR in the middle of a car detects the distance of 150-250 meters with the angle of about 10°; both sides of the car have one 24GHz MRR with the angle of about 30° and the detection distance of 50-70 meters. Delphi and Continental have developed a new-type radar -- MLRR involving dual scanning beam design and integrating three radars into one. ACC and AEB are the most practical ADAS functions, and will become the standard configuration of medium and high-end cars in the future. So, 77GHz radars have been developing quickly with the estimated market size of USD1.036 billion in 2015 and USD2.39 billion in 2018.
Millimeter-wave radar companies are vigorously developing the next-generation 79GHz radars whose detection accuracy is 2- to 4-fold of the current 77GHz radars. 79GHz radars are capable of detecting pedestrians and bicycles, showing a huge space for development; generally, 79GHz can detect objects within 70 meters and may become the mainstream of MRR, or erode some market shares of 24GHz radars in future. 79GHz radars are expected to be available in the market in 2018. Japan's Fujitsu Ten, Panasonic and Denso are the tycoons in this area.
Lidar basically offers simultaneous 3D digital model for autonomous driving. Lidar comprises two categories, namely fixed beam lidar (unit price: not higher than USD60) and scanning beam lidar (unit price: higher than USD10,000). In the early twenty-first century, a millimeter-wave radar was priced at around USD10,000. With powerful strength in the laser field, Japanese vendors successively developed fixed beam lidars to replace millimeter-wave radars. Yet as the price of MMW radar plummeted, the fixed beam lidar fade out in the market. But recently, fixed beam lidars have bounced back, especially Continental's MFL featured with a low price and a small size substitutes millimeter-wave radars partly again. Nevertheless, the detection distance of only 10-12 meters means the potential for expansion.
The expensive laser scanner is most commonly used for VelodyneHDL-64E at the top of Google autonomous-driving vehicles. The high costs are mainly reflected in optical and mechanical parts, particularly optical parts must be made by hand in a long time and unable to be mass-produced. Furthermore, laser diode (Ld), photodiode detector and FPGA are costly as well. The most effective way to reduce costs is to replace mechanical and optical parts with MEMS Micro Mirror. With matured technology, MEMS Micro Mirror has realized commercialization in the field of projectors, but it needs to be improved for lidars. The current defect lies in the angle and a low reflectivity in the case of close distance. For instance, Quanergy’s lidars only fetch the reflectivity of 10% in 100-meter distance, much lower than 80-90% of traditional lidars. A traditional 8-line laser scanner costs about USD3,000-4,000, while Quanergy who uses 8-line scanning claims that mass production can cut down the cost to USD100, which is possible.
The ultrasonic radar field is dominated by Bosch, Panasonic and Valeo, with inadequate market competition and stable prices. Hella acts as the champion in the 24GHz radar field. TRW has enhanced R & D after being merged by ZF. Continental holds large shares in Stop & Go ACC. As for the 77GHz radar realm, Bosch takes the first place by the farthest LRR3 detection range of 250 meters, but Bosch merely targets Audi and Volkswagen; while Continental Automotive serves a number of customers with diversified product lines. In the Japanese market, Fujitsu Ten ranks first and Denso second.
一、中国ADAS市场现状
1.1、2015年1-11月中国市场主要ADAS系统渗透率
1.2、2015年1-11月国内乘用车厂BSD(盲点检测)预装量
1.3、2015年1-11月国内乘用车厂AP(自动泊车)预装量
1.4、2015年1-11月国内乘用车厂SVC(环视系统)预装量
1.5、2015年1-11月国内乘用车厂ACC(自适应巡航)预装量
1.6、2015年1-11月国内乘用车厂AEB(自动刹车)预装量
1.7、2015年1-11月国内乘用车厂FCW(前碰报警)预装量
二、汽车雷达市场与产业
2.1、2014-2020年汽车用毫米波雷达市场规模
2.2、2014-2020年汽车用毫米波雷达市场规模by technology
2.3、2014-2020年汽车用毫米波雷达出货量by technology
2.4、2014-2020年全球Lidar市场规模与出货量
2.5、2014-2020年汽车用超声波雷达市场规模与出货量
2.6、日系厂家与ADAS传感器供应商配套关系(Who Supply Whom)
2.7、美韩中系厂家与ADAS传感器供应商配套关系(Who Supply Whom)
2.8、欧系厂家与ADAS传感器供应商配套关系(Who Supply Whom)
2.9、2015全球汽车雷达主要厂家市场占有率
2.10、2015全球汽车超声波雷达主要厂家市场占有率
三、汽车毫米波雷达应用趋势
3.1、汽车雷达发展历史
3.2、奔驰S级使用多达7个号密闭雷达
3.3、汽车毫米波雷达基本框架
3.4、毫米波雷达调制技术
3.5、FMCW是发展趋势
3.6、各种传感器对比与雷达分类
3.7、各种ADAS应用对应的毫米波雷达角度与探测距离
3.8、汽车毫米波雷达频谱
3.9、77GHz汽车雷达系统构成
3.10、ACC发展趋势
3.11、AEB发展趋势
3.12、可探测行人的79GHz雷达
四、激光雷达应用趋势
4.1、激光雷达是无人驾驶必需的传感器
4.2、激光雷达系统构成
4.3、Velodyne雷达简介
4.4、Velodyne HDL-64E拆解
4.5、Sick的LMS-291-S05型激光雷达拆解
4.6、IBEO激光雷达简介
4.7、IBEO的LIDAR Datasheet
4.8、IBEO的Lidar内建物体运动轨迹预测软件系统
4.9、日本和欧洲很多厂家都有采用IBEO的无人驾驶原型车
4.10、QUANERGY简介
4.11、Quanergy的超小型LIDAR参数一览
4.12、降低Lidar成本的方法-MEMS Micro Mirror
4.13、LIDAR后段处理系统图
4.14、廉价的固定光束红外激光雷达
五、汽车雷达企业研究
5.1、大陆汽车
5.1.1、大陆汽车简介
5.1.2、大陆汽车雷达客户
5.1.3、大陆汽车ACC系统应用车型
5.1.4、大陆汽车BSD系统应用车型
5.1.5、大陆汽车雷达性能参数
5.2、Bosch
5.2.1、BOSCH LRR3 Teardown
5.2.2、Bosch LRR Datasheet
5.2.3、Bosch MRR Datasheet
5.2.4、博世汽车雷达主要应用车型
5.3、TRW(ZF)
5.3.1、TRW简介
5.3.2、TRW雷达历史
5.3.3、TRW 24GHZ AC100 介绍
5.4、德尔福
5.4.1、德尔福简介
5.4.2、德尔福ESR雷达 Datasheet
5.5、Hella
5.5.1、Hella简介
5.5.2、Hella 24GHz雷达性能参数
5.6、Denso
5.6.1、Denso简介
5.6.2、Denso ADAS策略
5.6.3、Denso Radar Teardown
5.7、富士通天
5.7.1、富士通天简介
5.7.2、富士通天雷达
5.8、Autoliv
5.8.1、Autoliv简介
5.8.2、Autoliv雷达简介
5.9、Valeo
六、汽车ADAS趋势
6.1、传感器融合
6.2、集中式ADAS ECU
6.3、自动驾驶框架
6.4、自动驾驶原理
1 Status Quo of Chinese ADAS Market
1.1 Penetration of Major ADAS Systems
1.2 BSD Preinstallation of Passenger Car Brands in Jan-Nov 2015
1.3 AP Preinstallation of Passenger Car Brands in Jan-Nov 2015
1.4 SVC Preinstallation of Passenger Car Brands in Jan-Nov 2015
1.5 ACC Preinstallation of Passenger Car Brands in Jan-Nov 2015
1.6 AEB Preinstallation of Passenger Car Brands in Jan-Nov 2015
1.7 FCW Preinstallation of Passenger Car Brands in Jan-Nov 2015
2 Automotive Radar Market and Industry
2.1 Automotive Millimeter-wave Radar Market Size, 2014-2020
2.2 Automotive Millimeter-wave Radar Market Size by Technology, 2014-2020
2.3 Automotive Millimeter-wave Radar Shipment by Technology, 2014-2020
2.4 Global Lidar Market Size and Shipment, 2014-2020
2.5 Automotive Ultrasonic Radar Market Size and Shipment, 2014-2020
2.6 Supply Relationship between Japanese Brand and ADAS Sensor Suppliers
2.7 Supply Relationship between American, South Korean and Chinese Brand and ADAS Sensor Suppliers
2.8 Supply Relationship between European Brand and ADAS Sensor Suppliers
2.9 Market Share of Global Major Automotive Radar Companies, 2015
2.10 Market Share of Global Major Automotive Ultrasonic Radar Companies, 2015
3 Automotive Millimeter-wave Radar Application Trends
3.1 History of Automotive Radar
3.2 Mercedes-Benz S-Class Uses up to Seven Airtight Radars
3.3 Basic Framework of Automotive Millimeter-wave Radar
3.4 Millimeter-wave Radar Modulation Technology
3.5 FMCW Represents a Development Trend
3.6 Comparison between Various Sensors and Classification of Radars
3.7 Millimeter-wave Radar Angles Corresponding to Various ADAS Applications and Detection Range
3.8 Automotive Millimeter-wave Radar Spectrum
3.9 77GHz Automotive Radar System Configuration
3.10 ACC Development Trend
3.11 AEB Development Trend
3.12 79GHz Radar Which Can Detect Pedestrians
4 Lidar Application Trends
4.1 Lidar is the Essential Sensor for Unmanned Driving
4.2 Lidar System Constitution
4.3 Velodyne Radar
4.4 Velodyne HDL-64E Dismantling
4.5 Sick LMS-291-S05 Lidar Dismantling
4.6 IBEO Lidar
4.7 IBEO Lidar Datasheet
4.8 Object Trajectory Prediction Software System in IBEO Lidar
4.9 Many Japanese and European Brand have Unmanned Prototype Vehicles with IBEO
4.10 Quanergy
4.11 Parameters of Quanergy’s Ultra-compact LIDAR
4.12 Lidar Cost Reduction Method - MEMS Micro Mirror
4.13 Lidar Post Processing System Diagram
4.14 Inexpensive Fixed-beam Infrared Lidar
5 Automotive Radar Companies
5.1 Continental Automotive
5.1.1 Profile
5.1.2 Radar Customers
5.1.3 Vehicle Models with ACC System
5.1.4 Vehicle Models with BSD System
5.1.5 Performance Parameters of Radar
5.2 Bosch
5.2.1 LRR3 Teardown
5.2.2 LRR Datasheet
5.2.3 MRR Datasheet
5.2.4 Major Vehicle Models with Bosch’s Automotive Radar
5.3 TRW (ZF)
5.3.1 Profile
5.3.2 Radar History
5.3.3 24GHZ AC100
5.4 Delphi
5.4.1 Profile
5.4.2 ESR Radar Datasheet
5.5 Hella
5.5.1 Profile
5.5.2 Performance Parameters of 24GHz Radar
5.6 Denso
5.6.1 Profile
5.6.2 ADAS Strategy
5.6.3 Radar Teardown
5.7 Fujitsu Ten
5.7.1 Profile
5.7.2 Radar
5.8 Autoliv
5.8.1 Profile
5.8.2 Radar
5.9 Valeo
6 Automotive ADAS Trends
6.1 Sensor Fusion
6.2 Centralized ADAS ECU
6.3 Automatic Driving Framework
6.4 Automatic Driving Principles